

Economics of Future Growth in Photovoltaics Manufacturing

Paul Basore, NREL
Donald Chung, NREL
Tonio Buonassisi, MIT

IEEE Photovoltaic Specialists Conference New Orleans, Louisiana June 14-19, 2015

Global PV Manufacturing Capacity

Predicting the Future of PV

Technology Focus

Should we focus on silicon, or work on novel materials?

Business Focus

What policies will help make PV more successful?

Microeconomics

How much gain in efficiency do I need to justify the extra cost of n-type wafers?

Macroeconomics

How does the cost of capital affect the price of PV systems?

Steady-State

What is the LCOE of today's typical residential PV system?

Time-Dependent

How long will it take for PV to reach 1 TW of generation capacity?

The Simple Basis for this Presentation

The future of PV manufacturing is determined by:

- How much is invested
 - Capital Investment Rate: CapIR

- How much it costs
 - Capital Demand Rate: CapDR

Basic Assumptions

- Global PV manufacturing can be treated as an integrated value chain from polysilicon production through module assembly
 - The size of the global PV manufacturing industry can be characterized by the nominal ("nameplate") manufacturing capacity of this value chain
- Annual global investment in PV manufacturing tends to scale approximately in *proportion* to the size of the industry
 - Internal investment depends on sector's earnings
 - External investment depends on size of market
 - Availability of capital depends on perceived risk

Bigger

fares

better

Time-dependency details

- There is a delay of 6 to 24 months between a decision to invest in capacity expansion and its subsequent commissioning (nominal average 1 year)
- Manufacturing assets are useful for 5 to 15 years (nominal average 10 years)
- PV systems survive for 15 to 25 years (nominal average 20 years)

Capital Cost of Manufacturing Capacity

PV-Critical Manufacturing	Capex (\$yr/W)
Polysilicon Production	0.33
Ingot Casting/Wafer Slicing	0.25
Cell Fabrication	0.30
Module Assembly	0.13
TOTAL	1.01

Capital expense (Capex) normalized to nominal manufacturing capacity

- Scientifically correct unit is \$ per (W/yr) = \$yr/W
- Capex increases sublinearly with manufacturing capacity of each plant, but...
 - Capex is similar for additional plants of similar scale, thus linear on global scale
- Figures in table above assume 2 GW/yr plant scale located in the USA*
 - These figures are lower in Asia, but add values there for glass, backsheets, etc.
- Net result is a globally nominal 1 \$yr/W
 - · Plant utilization is treated separately
 - Cost of capital treated separately

*D. Powell, R. Fu, K. Horowitz, P. Basore, M. Woodhouse, and T. Buonassisi, "The capital intensity of crystalline silicon photovoltaics: Barriers to scale and opportunity for innovation," publication pending

Annualized Capital Requirement

Capital Demand Rate (CapDR)

Capital expense normalized to manufacturing capacity (Capex, \$yr/W)

Divided by the average life of the manufacturing assets (yr)

Increased to account for the weighted average cost of capital (WACC, %/yr)

$$\frac{1 \$yr/W}{10 \ yr} \times \left[1 + \frac{10\%/yr \times 10yr}{2}\right] = \$0.15/W$$

WACC

- Range for subsidized/guaranteed loans 0-10%/yr
- Range for conventional loans 10-15%/yr
- Range for equity investments 15-25%/yr
- Assume a mix of types averaging 10%/yr

Global Investment in PV Manufacturing

Baseline Scenario

CapIR stays near its current level

- Price competition limits profits available to increase investment
- Companies with declining investment will lose market share
- Baseline Scenario: Assume CapIR will stay in the range \$0.05/W \$0.10/W

CapDR stays near its current level

- The size of the PV industry has already achieved most of the benefits of scale
- Improvements require real innovation on a massive scale, which is slow
- Baseline Scenario: Assume CapDR will stay in the range \$0.10W \$0.20/W

What will happen if CapIR and CapDR stay near their current levels?

- CapIR < CapDR is not sustainable in the long term!
- Not enough investment to replace manufacturing assets as they are retired

PV Futures Spreadsheet Calculator

PV Futures	Calculator	Paul Basore	21-Jan-15	Version 5		Based on "Eco	nomics of Fu	ture Growth i	n Photovoltaics N	/Janufacturing	", IEEE PVSC42	, P. Basore, D.	Chung, T. Buonas	sisi
					DV 0 .									
.,	0 10 (4 (11)	Expansion	Renewal	Asset	PV System			R (\$/W)	WACC=0		Plant			
Year	CapIR (\$/W)	Capex (\$yr/W)	Capex (\$yr/W)		Lifetime (yrs)		Expansion		Capex (\$yr/W)		Utilization		WACC	
2015	\$0.075	\$1.50	\$1.50	10			0.15	0.15			80%			Baseline
2020	\$0.075	\$1.50	\$1.50	10			0.15	0.15			80%			Expansion
2030	\$0.075	\$1.50	\$1.50	10	20		0.15	0.15	\$1.00		80%		10%	Renewal
				51 .	5) (6)			o/			51 .			
	Margin	Capital	Capital	Plant	PV System	Investment		.,	anufacturing		Plant		W PV Nameplate	
		Expansion (\$yr/W)			Lifetime (yrs)	(\$B/yr)	Upgrades		Decommission	Capacity	Utilization	Installation	Decommission	Capacity
2000	\$0.08	\$1.50	\$1.50	10	20	\$0.0	0	0.0	0.0	0.5	60%	0.3	0.0	1.4
2001	\$0.08	\$1.50	\$1.50	10	20	\$0.2	0	0.1	0.0	0.6	67%	0.4	0.0	1.8
2002	\$0.08	\$1.50	\$1.50	10	20	\$0.3	0	0.2	0.0	0.8	50%	0.4	0.0	2.2
2003	\$0.08	\$1.50	\$1.50	10	20	\$0.5	0	0.3	0.0	1.1	55%	0.6	0.0	2.8
2004	\$0.08	\$1.50	\$1.50	10	20	\$0.8	0	0.5	0.0	1.6	75%	1.2	0.0	4.0
2005	\$0.08	\$1.50	\$1.50	10	20	\$1.4	0	0.9	0.0	2.5	60%	1.5	0.1	5.4
2006	\$0.08	\$1.50	\$1.50	10	20	\$0.6	0	0.4	0.0	2.9	66%	1.9	0.2	7.1
2007	\$0.08	\$1.50	\$1.50	10	20	\$7.2	0	4.8	0.0	7.7	49%	3.8	0.5	10.4
2008	\$0.08	\$1.50	\$1.50	10	20	\$7.4	0	4.9	0.0	12.6	53%	6.7	1.0	16.1
2009	\$0.08	\$1.50	\$1.50	10	20	\$11.6	0	7.7	0.0	20.3	55%	11.2	3.0	24.3
2010	\$0.08	\$1.50	\$1.50	10	20	\$21.5	0	14.3	0.0	34.6	62%	21.4	5.0	40.7
2011	\$0.08	\$1.50	\$1.50	10	20	\$26.1	0	17.4	0.1	51.9	70%	36.3	6.0	71.0
2012	\$0.08	\$1.50	\$1.50	10	20	\$9.2	0	6.1	0.2	57.8	63%	36.3	5.0	102.3
2013	\$0.08	\$1.50	\$1.50	10	20	\$4.1	0	2.7	0.3	60.2	66%	39.6	2.0	139.9
2014	\$0.08	\$1.50	\$1.50	10	20	\$6.0	0	4.0	0.5	63.7	82%	52.0	2.0	189.9
2015	\$0.08	\$1.50	\$1.50	10	20	\$4.8	0.9	2.3	0.9	66.0	80%	52.8	0.0	242.7
2016	\$0.08	\$1.50	\$1.50	10		\$4.9	0.4	2.9		68.9	80%	55.1	0.0	297.8
2017	\$0.08	\$1.50	\$1.50	10	20	\$5.2	3.4	0.0	-	67.5	80%	54.0	0.0	351.8
2018	\$0.08	\$1.50	\$1.50	10	20	\$5.1	3.4	0.0		66.0	80%	52.8	0.0	404.6
2019	\$0.08	\$1.50	\$1.50	10	20	\$5.0	3.3	0.0		61.6	80%	49.3	0.0	453.9
2020	\$0.08	\$1.50	\$1.50	10		\$4.6	3.1	0.0		50.4	80%	40.3	0.3	493.9
2021	\$0.08	\$1.50	\$1.50	10	20	\$3.8	2.5	0.0	17.4	35.5	80%	28.4	0.4	521.9

- Allows *CapIR* and *CapDR* to change with time (2015, 2020, 2030 values)
- Allows different CapDR for expansion or renewal of existing capacity
- Investment each year based on previous year's manufacturing capacity

Spreadsheet available for download from www.pvcolleagues.net (Archives)

Baseline Sensitivity to CapIR and CapDR

Increase in Capital Investment Rate

Decrease in Capital Demand Rate

Impact on Future PV Generation Capacity

Conclusions

- The existing PV manufacturing capacity is sufficient to supply 5% of the world's electricity, but only if capacity can be replaced as it is retired
 - Maintaining the economic status quo is not enough!
- CapIR needs to increase by \$0.10/W for PV to grow
 - Accelerate manufacturing cost reductions
 - Accelerate improvements in module efficiency
 - Accelerate reductions in balance of system and soft costs
 - Further increase the perceived value of PV systems
 - Expand government and utility incentives for renewable energy
- Reducing CapDR will then accelerate that growth
 - Reducing CapDR by half is similar to an additional \$0.10/W increase in CapIR
- Economic sustainability of the existing c-Si PV industry is tantalizingly close and absolutely necessary for the future success of PV